Pack Bogren Digital - Vente Guitariste.com
Vente privée sur Guitariste.com
Découvrez notre pack Ampknob killer RevC + Bassknob STD + Jens Bogren Signature
-50%
Temps restant
19 J
:
11 H
:
55MN
:
26 SEC
Pour en profiter
x

4X12 Marshall HP en 8 ohms et 16 ohms

Forum Marshall
Forums
Rappel du dernier message de la page précédente :
blackGhost
The Trout a écrit :
Je ne sais pas, ça fait 30 ans que je lis partout qu'il n'y a pas de risque à brancher une tête 8 ohms dans un baffle 16ohms mais que le contraire est très dangereux pour le transfo et toi tu me dis que c'est le contraire, peux-tu citer tes sources?


En fait j'avais fait pas mal de recherches sur les différents forums dont celui-ci et j'étais arrivé à cette conclusion. Malheureusement je ne retrouve plus les topics.
Il y a beaucoup d'idées reçues dans le domaine car beaucoup de personnes pensent qu'un ampli à lampes fonctionne comme un ampli à transistors. Du coup on trouve beaucoup d'information erronées.

En tout cas il y a au moins les manuels d'utilisateur Mesa qui confirment que brancher une enceinte d'impédance inférieure bouffe juste les lampes.
A l'inverse brancher une impédance infinie (donc supérieure à celle de la sortie) fait cramer le transfo de sortie. C'est le cas quand on ne branche rien du tout.

Je vais essayer de retrouver les topics en question.
Ecoutez le dernier album de hiLØ :li.sten.to/darkthoughts-album
The Trout
Extrait du manuel utilisateur Mesa Dual Rectifier:


(...) You can always have a higher resistance ( 16 ohms,for example ) without damaging results, but too low of a resistance will likely cause problems.(...)

When running a higher resistance ( for example: 8 ohm output into 16 ohm cabinet ), a slightly different feel and response will be eminent. A slight mismatch can provide a darker smoother tone with a little less output and attack. This response is
a result of the amplifier running a bit cooler. Sometimes when using more than one cabinet a mismatch will be the only option.
“The type of cap is not as important as the value of the cap, for guitar. In an Amp, your cap type is much more important, as the signal is being passed through the cap all the time. In a guitar, you’re not hearing the cap itself, you’re hearing what the cap is impeding”. Lindy Fralin
jeff10
à blackGhost
Si leurs métier ok,mais la conception sur certains models laisse à réfléchir
orphee18
Bon en tout cas cela fonctionne très bien, je remercie les uns et les autres d'avoir pris part à ce sujet et d'avoir éclairé ma lanterne!

En plus je suis certain que cela peut être utile à d'autres.
https://m.facebook.com › LeJourDesFous
blackGhost
The Trout a écrit :
Extrait du manuel utilisateur Mesa Dual Rectifier:


(...) You can always have a higher resistance ( 16 ohms,for example ) without damaging results, but too low of a resistance will likely cause problems.(...)

When running a higher resistance ( for example: 8 ohm output into 16 ohm cabinet ), a slightly different feel and response will be eminent. A slight mismatch can provide a darker smoother tone with a little less output and attack. This response is
a result of the amplifier running a bit cooler. Sometimes when using more than one cabinet a mismatch will be the only option.


Ça ne contredit pas ce que j'ai dit :
- Quand la résistance du cabinet est plus importante c'est le transfo qui prend. Comme ceux des Mesa sont costauds => aucun problème
- Quand la résistance du cabinet est plus faible, c'est les lampes qui prennent => "will cause problem". En effet les lampes vont se bouffer vite.

Dans la manuel du Mesa Stiletto, on trouve d'ailleurs l'info suivante :

Citation:
Overall your ACE is very impedance friendly and most speaker loads will work great with the exception of slightly shorter power tube life occuring when a mismatch in the low direction (two 4 Ohm cabs - each in a 4 Ohm jack to produce a total load of 2 Ohms) is used for long periods of time


Cette information est toutefois un peu contradictoire avec les recommandations génériques de chez Mesa qu'on retrouve à la fin du manuel :

Citation:
Never run below 4 ohms in a tube amplifier unless you are absolutely certain that the system can handle it properly; this can cause damage to the Output transformer


Sinon j'ai retrouvé le post où une personne expliquait les 2 cas :

Citation:
Actually a greater load is bad for a tube amp.
The reason is called reflected impedance and it's bad news.
If you are going to mismatch VALVE amps it is actually less bad, (for the amp or more specifically, the Output Transformer), to mismatch to a lower impedance, (16 ohm into 8 ohm cab), rather then higher. Unlike solid-state amps, valve amps are basically self limiting current wise (the valves!) into a lower impedance, though the valves will take more wear. Into a too high impedance the risk is different - potential very high flyback voltages can fry the OT. But most valve amps with strong output transformers will take a 1/2 to 2x mismatch without complaining.

Although not recommended, technically you can short circuit a valve amps output (0 ohms) without frying it - it is trying to put a signal into an open circuit (virtually infinite ohms) that is a real killer. Total opposite from solid-state amps of course - short circuits will kill the power transistors pronto, but they'll sit happily all day with no speaker load applied.

Solid State amps: Safe with rated load or with any higher impedance speaker load (up to & including an open circuit ie infinite ohms.) Develop less power as impedance increases. Do not short circuit (0 ohms) as this is sudden death for the output transistors.

Valve amps: Match impedance if possible. If mismatching, it is safer for the amp to mismatch low. This will wear the valves but the amp shouldn't suffer. A short circuit (0 ohms) is normally survivable.

If mismatching high there is a risk to the OT, which increases with the severity of the mismatch, & with how hard you are pushing the valve output section. The ultimate 'high' mismatch is no speaker load ie infinite ohms. If trying to pass a signal into this then there is a severe risk to the OT from high flashback voltages which can arc through the insulation layers & burn out the tranny. Mismatching between 1/2 & 2x the impedance the amp 'expects to see' is normally problem free for most amps with healthy OTs. It is never guaranteed safe though, & being manufacturer specific Marshalls fail much more often when doing this then Fenders do. There is a lot of misunderstanding about impedance & mismatching issues, but I repeat that the advice I'm giving is correct for valve amps. (The exact opposite is true for solid state amps, but they work very differently, usually having no output transformers for starters!)

For why Marshalls are extra sensitive, could be the transformer design, could be that selector switch. I personally would not worry too much about a 2:1 mismatch too low, but I might not do a mismatch high on Marshalls with the observed data that they are not all that sturdy under that load. In that light, pulling two tubes & leaving the impedance switch alone might not be too bad, as the remaining tubes are running into a too-low rather than too-high load.

Yes running 8 ohm amp --> 16 ohm cab is probably within normal safe limits (within 1/2 to 2x impedance range) for most valve amps. In fact you'll often get away with playing Russian Roulette by running a 4 ohm amp to a 16 ohm cab, but the risk to transformers is definitely greater when going into a higher then intended impedance. You really are always better to have the speaker impedance lower if mismatching! If you value your amp that is. Going lower strains the valves more then normal, but they are disposable in a way that the output transformer isn't. (Which is after all why valves are removable from their sockets.)

The thing you CAN do to hurt a tube output transformer is to put too high an ohmage load on it. If you open the outputs, the energy that gets stored in the magnetic core has nowhere to go if there is a sudden discontinuity in the drive, & acts like a discharging inductor. This can generate voltage spikes that can punch through the insulation inside the transformer & short the windings. I would not go above double the rated load on any tap. & NEVER open circuit the output of a tube amp - it can fry the transformer in a couple of ways.

It's almost never low impedance that kills an OT, it's too high an impedance. The power tubes simply refuse to put out all that much more current with a lower-impedance load, so death by overheating with a too-low load is all but impossible - not totally out of the question but extremely unlikely. The power tubes simply get into a loading range where their output power goes down from the mismatched load. At 2:1 lower-than-matched load is not unreasonable at all. If you do too high a load, the power tubes still limit what they put out, but a second order effect becomes important.

There is magnetic leakage from primary to secondary & between both half- primaries to each other. When the current in the primary is driven to be discontinuous, you get inductive kickback from the leakage inductances in the form of a voltage spike. This voltage spike can punch through insulation or flash over sockets, & the spike is sitting on top of B+, so it's got a head start for a flashover to ground. If the punchthrough was one time, it wouldn't be a problem, but the burning residues inside the transformer make punchthrough easier at the same point on the next cycle, & eventually erode the insulation to make a conductive path between layers. The sound goes south, & with an intermittent short you can get a permanent short, or the wire can burn though to give you an open there, & now you have a dead transformer.

So how much loading is too high? For a well designed (equals interleaved, tightly coupled, low leakage inductances, like a fine, high quality hifi) OT, you can easily withstand a 2:1 mismatch high. For a poorly designed (high leakage, poor coupling, not well insulated or potted) transformer, 2:1 may well be marginal. Worse, if you have an intermittent contact in the path to the speaker, you will introduce transients that are sharper & hence cause higher voltages. In that light, the speaker impedance selector switch could kill OT's if two ways - if it's a break before make, the transients cause punch through; if it's a make before break, the OT is intermittently shorted & the higher currents cause burns on the switch that eventually make it into a break before make. Turning the speaker impedance selector with an amp running is something I would not chance, not once.

Too high impedances on the speaker outputs are much more dangerous for valve amps then too low impedances are. You can short circuit the + & - speaker output connections by connecting them together. (This gives very low impedance, close to zero ohms.) Valve amps can survive this. But if you don't believe me then try this: power up your own valve amp, unplug your speaker, take it off standby & crank that baby into an open circuit very high impedance load. (Fresh air) You stand a very good chance of frying your amps OT!

Speaker load impedances and reflected loads to the output tubes are all "nominal". An 8-ohm speaker may actually look like anything from 6-ohms to 100-ohms, depending on the frequency, since the reactive impedance changes with frequency. This means that the reflected load to the tubes is varying widely over the frequency range.

A nominal 8-ohm load may reflect 4k to the plates of the output tubes with a given transformer. The amp might be designed to produce its maximum power into this load, with a designed frequency response. This is the "power bandwidth". If we change the load to 16-ohms, the reflected load doubles and the frequency response shifts upward. We lose bass but have a brighter sound, and also lose power. If we change to a 4-ohm load, the reflected impedance drops to 2k, into which the tubes produce less power, and the bandwidth is again narrowed.

The reason for the confusion, I believe, is that people think tubes will try to behave the same way transistors do. Into half the load impedance, a transistor will try to deliver twice as much current. The device may overheat and destroy itself in the process. Tubes, however, simply don't behave like transistors.

The design issue for impedance matching comes into play when a designer takes the approach that "everything is critical". In some circuits, this may be the case. Tubes don't really care. There is no optimum load for a tube unless you are going for minimum THD, and this then depends upon the other operating conditions. For guitar, criticality is purely aesthetic. The designer says "this is good", "this is bad" and in that decree believes it to be so. He is correct in his subjective impression, but should not confuse the subjective and objective.

JJ


source: http://www.tdpri.com/forum/amp(...).html

C'est très technique et j'avoue ne pas avoir tout compris mais tous les posts où il y avait une explication détaillée arrivaient à la même conclusion.[/url][/quote]
Ecoutez le dernier album de hiLØ :li.sten.to/darkthoughts-album

En ce moment sur ampli et préampli guitare et Marshall...